A GEOMETRIC STUDY OF WASSERSTEIN SPACES: HADAMARD SPACES
نویسندگان
چکیده
منابع مشابه
A GEOMETRIC STUDY OF WASSERSTEIN SPACES: ULTRAMETRICS by Benôıt
— We study the geometry of the space of measures of a compact ultrametric space X , endowed with the L Wasserstein distance from optimal transportation. We show that the power p of this distance makes this Wasserstein space affinely isometric to a convex subset of l. As a consequence, it is connected by 1 p -Hölder arcs, but any α-Hölder arc with α > 1 p must be constant. This result is obtaine...
متن کاملOn subdifferential in Hadamard spaces
In this paper, we deal with the subdierential concept onHadamard spaces. Flat Hadamard spaces are characterized, and nec-essary and sucient conditions are presented to prove that the subdif-ferential set in Hadamard spaces is nonempty. Proximal subdierentialin Hadamard spaces is addressed and some basic properties are high-lighted. Finally, a density theorem for subdierential set is established.
متن کاملA Geometric Study of Wasserstein Spaces: An Addendum on the Boundary
We extend the geometric study of the Wasserstein space W2(X) of a simply connected, negatively curved metric space X by investigating which pairs of boundary points can be linked by a geodesic, when X is a tree. Let X be a Hadamard space, by which we mean that X is a complete globally CAT(0), locally compact metric space. Mainly, X is a space where triangles are “thin”: points on the opposite s...
متن کاملSnowflake Universality of Wasserstein Spaces
For p ∈ (1,∞) let Pp(R) denote the metric space of all p-integrable Borel probability measures on R, equipped with the Wasserstein p metric Wp. We prove that for every ε > 0, every θ ∈ (0, 1/p] and every finite metric space (X, dX), the metric space (X, dX) embeds into Pp(R) with distortion at most 1 + ε. We show that this is sharp when p ∈ (1, 2] in the sense that the exponent 1/p cannot be re...
متن کاملFirst variation formula in Wasserstein spaces over compact Alexandrov spaces
We extend results proven by the second author ([Oh]) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spacesX with curvature bounded below: the gradient flow of a geodesically convex functional on the quadratic Wasserstein space (P(X),W2) satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Topology and Analysis
سال: 2012
ISSN: 1793-5253,1793-7167
DOI: 10.1142/s1793525312500227